Coriolus versicolor: a medicinal mushroom with promising immunotherapeutic values

KK Chu, SS Ho and AH Chow

J. Clin. Pharmacol. 2002; 42; 976

The online version of this article can be found at:
http://www.jclinpharm.org/cgi/content/abstract/42/9/976

Published by:
SAGE Publications
http://www.sagepublications.com

On behalf of:
American College of Clinical Pharmacology

Additional services and information for The Journal of Clinical Pharmacology can be found at:

Email Alerts: http://www.jclinpharm.org/cgi/alerts

Subscriptions: http://www.jclinpharm.org/subscriptions

Reprints: http://www.sagepub.com/journalsReprints.nav

Permissions: http://www.sagepub.com/journalsPermissions.nav
Coriolus versicolor (CV) is a medicinal mushroom widely prescribed for the prophylaxis and treatment of cancer and infection in China. In recent years, it has been extensively demonstrated both preclinically and clinically that aqueous extracts obtained from CV display a wide array of biological activities, including stimulatory effects on different immune cells and inhibition of cancer growth. The growing popularity of aqueous CV extracts as an adjunct medical modality to conventional cancer therapies has generated substantial commercial interest in developing these extracts into consistent and efficacious oral proprietary products. While very limited information is available on the physical, chemical, and pharmacodynamic properties of the active principles present in these extracts, there has been sufficient scientific evidence to support the feasibility of developing at least some of these constituents into an evidence-based immunomodulatory agent. In this article, the background, traditional usage, pharmacological activities, clinical effects, adverse reactions, active constituents, and regulatory aspects of CV are reviewed. Presented also in this review are the current uses and administration, potential drug interactions, and contraindication of aqueous extracts prepared from CV.

Journal of Clinical Pharmacology, 2002;42:976-984
©2002 the American College of Clinical Pharmacology
cytotoxic activity of splenocytes and T-killer cells isolated from tumor-implanted mice.12,15

Numerous in vivo studies have revealed that aqueous CV extracts generally possess no significant immunological effect in the normal host but have the ability to restore certain depressed immunological responsiveness caused by tumor burden or chemotherapy back to the normal level.8,16-18 Furthermore, the stimulatory effects of CV on the production of complement, interferon, and ILs have been observed in vivo.16,17,19,20 The CV extract was also shown capable of enhancing the host’s resistance to bacterial and fungal infections when administered intraperitoneally.12

Antitumor Effects

Several in vitro studies have suggested that CV extracts possess selective cytotoxic activity against certain tumor cells. Xu21 reported that the growth of several human cancer cell lines—namely, gastric cancer (7907), lung cancer (SPC), leukemia (MCL), and lymphoma (SLY)—was markedly inhibited by a crude CV extract at 1 mg/ml after 72 hours of incubation. Similar findings were obtained by Yang and coworkers2,18,22-24 for an acidic CV purified fraction, which inhibited the growth of the human leukemia cell line (HK-60), liver cancer cell line (SMMC-7721), and stomach cancer cell line (SCG-7901) at 100 µg/ml after 96 hours of incubation but exerted very little effect on normal cell lines such as human fetal liver and lung cells. Wan et al25 attributed the antitumor activity of CV extracts to selective inhibitory actions against cellular DNA synthesis and division rather than apoptosis. However, this explanation cannot rationalize the observed contrasting effects of the extracts on the growth of tumor cells and of normal proliferative cells such as the lymphocytes and pluripotent stem cells. Thus, the cytotoxic mechanism of CV extracts still remains a subject of considerable debate.

The in vivo antitumor activities of CV extracts have also been extensively studied. A significant reduction of the tumor size after prolonged administration with CV extract was clearly shown in mice inoculated with leukemia cell (P388, HL-30, L1210),8,10 nasopharyngeal carcinoma, lung adenocarcinoma (Lewis),26,27 and liver cancer (HEPG2, AH13, AH44, AH66, AH7974, AH66P).28
fibrosarcoma (MethA, SMT-2, SMT-5), mastocytoma (P815), mammary tumor, sarcoma (NH2-resistant strain, Walker 256, MCS-8, MCS-1, MC-2), melanoma B16), or colon cancer. The extract also appeared to be effective for the prophylaxis against esophageal, colon, breast, liver, lung, and bladder cancers.12

Antimicrobial Effects

In some in vivo animal studies, CV extract was observed to display a broad spectrum of antibacterial and antifungal activities against common pathogens such as *Escherichia coli*, *Pseudomonas aeruginosa*, *Staphylococcus aureus*, *Candida albicans*, *Klebsiella pneumoniae*, *Listeria monocytogenes*, and *Streptococcus pneumoniae*. Intraperitoneal administration was more effective than oral administration, which required repeated administration for 2 weeks before significant therapeutic effect could be achieved.16 The observed antimicrobial effects of the extract are possibly due to the activation of polymorphonuclear cells and an increased secretion of antimicrobial cytokines (e.g., tumor necrosis factor, IL-1). CV extracts have also been reported to show in vitro antiviral activities.29,30

Other Pharmacological Effects

Hepato-protective and analgesic activities have also been demonstrated with CV extracts.31,32

ACTIVE INGREDIENTS

The chemical composition of CV is understandably complex, based on consideration of its diverse biological activity profile. Various classes of compounds have been suggested to be responsible for the biological activities (immunostimulatory activity in particular) of aqueous CV extracts (Figure 2).33 Of all these ingredients, polysaccharopeptide (PSP) is considered the major or representative category. Listed in Table I are the physicochemical properties of some of these compounds. Since PSP probably represents a homogeneous mixture of macromolecules with closely similar physicochemical characteristics, isolation of a single pure PSP for structural elucidation is technically difficult if not impossible. To date, only a few key structural features of PSP have been identified using a combination of less specific characterization techniques. These characterization studies suggested that PSP is a group of polysaccharides chemically linked to certain peptides. The polysaccharide strand is a β(1 → 3)-glucan branching at 4’ and 6’ positions. The peptide moiety is rich in aspartic and glutamic acids. Many other amino acids are also present but in a relatively small amount.12 Aqueous extracts of CV usually contain PSP of widely different molecular weights. Only the ones of high molecular weight (i.e., > 10 kDa) are generally considered immunologically active.5,34

CLINICAL STUDIES

The therapeutic use of CV as an adjunct therapy in cancer treatment has been substantiated by numerous clinical trials employing PSP or PSK (Krestin), two of the most popular proprietary products manufactured from aqueous extracts of *Coriolus versicolor*. Table II summarizes the methodological parameters and the results of some of these trials. The methodological quality of these trials has been evaluated using the approach developed by Jadad et al with modification.35 It is widely accepted that conventional cancer treatment provides palliative rather than curative therapy for many forms of cancers, which results in temporary clearing of the signs of cancer with the possibility of relapse right after stopping the cancer therapy.36 Since a cure for cancer with conventional cancer therapies is normally not possible, these trials mainly focused on assessing
<table>
<thead>
<tr>
<th>Chemical Class</th>
<th>Name</th>
<th>Source</th>
<th>Physicochemical Properties</th>
<th>Chemical Composition</th>
<th>Biological Properties</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polysaccharopeptides</td>
<td>PSK (Krestin)</td>
<td>Mycelia of Coriolus versicolor CM-101 strain</td>
<td>Brown in color; soluble in water; insoluble in organic solvents; stable to heat; mean MW = 100 kDa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>18%-38% w/w protein (1 → 3)β-glucan branched at 4’ and 6’ positions</td>
<td>In vitro and in vivo immunorestorative and antitumor activities</td>
<td>16, 42</td>
<td></td>
</tr>
<tr>
<td>Polysaccharides</td>
<td>CSP</td>
<td>Mycelia of Coriolus versicolor Cov-1 strain</td>
<td>Brown in color; soluble in water; insoluble in organic solvents; stable to heat; mean MW = 100 kDa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(1 → 3)β-glucan branched at 4’ and 6’ positions</td>
<td>In vitro and in vivo immunorestorative and antitumor activities</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CVG (CV glucan)</td>
<td>Mycelia of Coriolus versicolor Iwade</td>
<td>White powder; soluble in water and DMSO; insoluble in organic solvents; heat stable; MW > 2000 kDa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elemental analysis: C = 38%, H = 5.7%; glucose content = 98.4%-99.8%; (1 → 3)β-glucan</td>
<td>Enhance the antitumor effect of chemotherapy in vivo</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td>Polypeptides</td>
<td>PCV (Peptide CV)</td>
<td>PSP</td>
<td>MW = 10 and 50 kDa</td>
<td></td>
<td></td>
<td>18</td>
</tr>
<tr>
<td>Small molecules</td>
<td>Coriolin (I)</td>
<td>Mycelia of Coriolus consors</td>
<td>Colorless; needle shaped; melting point 175°C; soluble in polar organic solvents and water; MW = 280 Da</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elementary analysis: C = 63.6, H = 7.2, N = 0; sesquiterpene</td>
<td>In vitro inhibitory effect on different human cancer cell lines; in vivo effects on proliferating white blood cells and increasing the weight of immune organs</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deoxycoriolic acid (II)</td>
<td>Mycelia of Coriolus consors</td>
<td>Colorless; oily; soluble in organic solvents; insoluble in water; MW = 404.2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Elemental analysis: C = 68.2, H = 8.2</td>
<td>In vitro inhibitory effect on the growth of gram +ve and –ve bacteria; little inhibitory effect on leukemia 1210 cell line</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Reference</td>
<td>Jadad Score</td>
<td>Study Design</td>
<td>Sample Size</td>
<td>Inclusion/Exclusion Criteria of the Studies</td>
<td>Treatment Schedule</td>
<td>Results</td>
</tr>
<tr>
<td>-----------</td>
<td>-------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--</td>
<td>--------------------</td>
<td>---------</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>Two parallel groups, follow-up study</td>
<td>185 stage I to III non-small-cell lung cancer patients treated with radical radiotherapy</td>
<td>Patients considered to be highly curable</td>
<td>One group of patients received PSK (3 g/day) for 2 weeks alternating with a 2-week rest period for 5 years.</td>
<td>PSK group showed significantly higher 2-year and 5-year survival rates ($p < 0.05$). Patients with better general health were more responsive to PSK treatment than those of poor performance status. Estrogen receptor +ve patients administered with PSK or fluorafur also showed significant improvement in 5-year survival rate and relapse-free period compared with the control ($p < 0.05$). No significant difference between the three patient groups in estrogen receptor –ve patients. Patients receiving PSK suffered fewer side effects than those receiving fluorafur.</td>
</tr>
<tr>
<td>38</td>
<td>5</td>
<td>Randomization, follow-up study</td>
<td>540 estrogen receptor–positive breast cancer patients who underwent total mastectomy plus axillary dissection and received chemotherapy</td>
<td>Patients with bilateral breast cancer, patients with non-invasive carcinoma, males with breast cancer, patients with inflammatory breast cancer, pregnant or lactating patients, and patients with double cancers were excluded. Patients with leukocyte count > 3000/µl, platelet count > 100,000/µl, total protein level > 6.0 g/dl, and no other medical illness were included.</td>
<td>525/540 patients were randomly assigned to receive chemotherapy plus fluorafur (600 mg/day), chemotherapy plus PSK (3 g/day), or chemotherapy alone for 2 years.</td>
<td>No difference in the side effect profile between two groups was found.</td>
</tr>
<tr>
<td>39</td>
<td>4</td>
<td>Randomization, follow-up study</td>
<td>262 gastric cancer patients receiving surgery and chemotherapy</td>
<td>Patients with age > 75 years and having a positive purified protein derivative skin test and a primary tumor of T2 or T3 were included. Patients who underwent any radiotherapy, chemotherapy, or immunotherapy or having multiple cancers, severe complications, or any abnormal hematological findings were excluded.</td>
<td>245/262 patients were randomly assigned to control (chemotherapy) and treatment (chemotherapy plus PSK [3 g/day for 4 weeks alternating with a 4-week rest period]) groups.</td>
<td>PSK treatment group showed significantly higher 5-year disease-free survival ($p < 0.05$) and overall survival rate ($p < 0.05$). No significant difference in survival rate in the four patient groups. No change in CD4+/CD8+ in all patients except those from PSK groups, which showed an unexpected decrease.</td>
</tr>
<tr>
<td>40</td>
<td>3</td>
<td>Randomization, follow-up study</td>
<td>65 patients with hepatocellular carcinoma receiving chemotherapy</td>
<td>Patients with life expectancy greater than 3 months, absence of any serious cardiac or renal problem, and absence of hypersensitivity to OK-432 were included; those with white blood cell count > 2000/µl, platelet count > 40,000/µl, and hemoglobin > 8 g/dl were included.</td>
<td>58/65 patients receiving chemotherapy were randomly assigned to one of the following four groups—namely, PSK (3 g/day every other week) group, lentinan (2 mg IV once a week) group, OK-432 (0.2-0.5 KE s.c. once a week) group, and control group.</td>
<td>No significant difference in survival rate in the four patient groups. No change in CD4+/CD8+ in all patients except those from PSK groups, which showed an unexpected decrease.</td>
</tr>
<tr>
<td>Reference</td>
<td>Jadad Score (maximum = 8)</td>
<td>Study Design</td>
<td>Sample Size (intervention/control)</td>
<td>Inclusion/Exclusion Criteria of the Studies</td>
<td>Treatment Schedule (intervention/control)</td>
<td>Results</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>------------------------------------</td>
<td>--</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>41</td>
<td>3</td>
<td>Randomization, follow-up study</td>
<td>359 patients with estrogen receptor–negative breast cancer</td>
<td>Women younger than 76 years of age with stage IIA, IIB, or IIIA primary breast cancer who had received any extended, standard, or modified radical mastectomy were included. Patients with bilateral cancer with non-invasive carcinoma, distant metastasis, nodal fixation, fixation to chest wall, and ulceration; patients who were pregnant or lactating; patients with a history of cancer in another organ; and patients who underwent prior therapy for breast cancer were excluded.</td>
<td>Patients received either standard chemotherapy or chemotherapy plus PSK (3 g/day) for 2 years.</td>
<td>No significant difference in the relapse-free survival or overall survival between the control and the PSK treatment group. No marked side effect due to PSK was found.</td>
</tr>
<tr>
<td>45</td>
<td>3</td>
<td>Double blind, randomization, placebo controlled</td>
<td>50 gastric cancer patients receiving surgery and chemotherapy</td>
<td>Patients with high performance status; life expectancy > 3 months; no serious heart, liver, or kidney disease; normal hematological picture; and normal lung and liver functions were included.</td>
<td>Patients received either PSP (3 g/day) or placebo for 3 months</td>
<td>Natural killer cells (NK) activity and CD4+/CD8+ increased significantly compared with control ($p < 0.05$).</td>
</tr>
<tr>
<td>46</td>
<td>4</td>
<td>Double blind, randomization, placebo controlled</td>
<td>151 inpatients with nonparvicellar lung cancer</td>
<td>Patients of age < 70, life expectancy > 3 months, and who had no major organ failure and received no chemotherapy or immunotherapy in the past 4 months</td>
<td>Patients received either PSP (3 g/day) or placebo for 1 to 2 months.</td>
<td>Significant improvement of subjective assessment of some general symptoms. NK activity and IL-2 level increased significantly ($p < 0.05$).</td>
</tr>
<tr>
<td>47</td>
<td>4</td>
<td>Randomization, placebo controlled</td>
<td>82 gastric cancer patients receiving surgery and chemotherapy</td>
<td>Patients of age < 70, life expectancy > 3 months, and who had no major organ failure and received no chemotherapy or immunotherapy in the past 4 months</td>
<td>Patients received either chemotherapy plus PSP (3 g/day) for 2 months or chemotherapy alone.</td>
<td>NK activity, IL-2 level, and CD4+/CD8+ increased significantly compared with control ($p < 0.05$). No difference in toxicity (e.g., GI discomfort between treatment and control groups) was found.</td>
</tr>
</tbody>
</table>
the effects of the extract on the prolongation of the relapse-free period and improvement of prognosis in patients suffering from various kinds of cancer. With respect to these assessment parameters, the clinical usefulness of the extract appeared to be more evident for gastric and esophageal cancers than for breast, lung, and liver cancers.37-42 Another clinical aspect of CV extracts that has been extensively studied is the immunopotentiating effect. Restoration of the immune status of cancer patients is important since development of leukopenia or thrombocytopenia, a common side effect of radiotherapy and chemotherapy, may necessitate not only dose reduction but also interruption of conventional cancer therapies.36,43 In addition, immunocompromised patients are more exposed to the risk of opportunistic infections.44 Based on the clinical data accrued to date, CV extracts appear highly effective for restoring depressed blood levels of lymphocytes and IL-2 and weakened antitumor activity of natural killer cells.45-50 It is worth noting that patients with better immunocompetence and less severe forms of cancer show a better response to the administered CV extract. This suggests that the efficacy of the CV extract in the body is closely linked to the host’s immune status.

CONTRAINDICATION

CV is generally considered safe for human consumption, irrespective of age and gender. However, the use of CV may be contraindicated in patients suffering from autoimmune diseases or receiving bone marrow transplant.

REGULATORY STATUS

CV extracts are widely available as oral proprietary products on the market. These products are normally considered as health supplements and can be purchased without a prescription even though they are extensively used in cancer treatment for the relief of the side effects associated with radiation therapy and chemotherapy. However, in China and Japan, certain CV products are classified as drugs for specific therapeutic indications. The health authorities of Japan only regard CV extract useful as an adjunct therapeutic remedy and require it to be used in combination with other chemotherapeutic agents for the treatment of cancer.54

CONCLUSION

A substantial number of reports based on preclinical and clinical studies have clearly attested to the therapeutic values of aqueous CV extracts in the treatment of cancer. The clinical efficacy of the extracts after oral administration has been demonstrated in more than 30 clinical trials in which significant improvement in both survival rate and general health status was generally observed in cancer patients receiving chemotherapy and/or radiotherapy. Polysaccharopeptide (peptide-linked polysaccharide) with an average molecular weight in excess of 100 kDa is generally believed to be the principal component responsible for the immunomodulatory actions of CV. In conclusion, being an effective immunomodulant or immunostimulant with virtually no side effects, CV extract offers tremendous potential for development into an evidence-based oral immunotherapeutic agent.

REFERENCES

25. Wan JMF, Yang MP, Sit WH: Mechanisms of Yun Zhi control of tumor cell proliferation, in: Yang QY (ed.), *Advanced Research in PSP*. Hong Kong: Hong Kong Association for Health Care, 1999;244-260.

30. Collins RA, Ng TB: Polysaccharopeptide from *Coriolus versicolor* has potential for use against human immunodeficiency virus type 1 infection, in: Yang QY (ed.), *Advanced Research in PSP*. Hong Kong: Hong Kong Association for Health Care, 1999;181-186.

31. Young JHK: Metabolic studies to investigate the protective effects of polysaccharide peptide (PSP) on paracetamol-induced hepatotoxicity in the rat, in: Yang QY (ed.), *Advanced Research in PSP*. Hong Kong: Hong Kong Association for Health Care, 1999;126-127.

51. Jin TY: Toxicological research on Yun Zhi polysaccharopeptide (PSP), in: Yang QY (ed.), Advanced Research in PSP. Hong Kong: Hong Kong Association for Health Care, 1999:76-79.

